CO06.00005

The SOL as an Intensity and Heat Flux Driven Boundary Layer: Implication for Heat Load Scalings

P.H. Diamond ⁽¹⁾, Xu Chu ⁽²⁾, C.McDevitt ⁽³⁾, Y. Kosuga ⁽⁴⁾, Z.B. Guo ⁽⁵⁾

⁽¹⁾ U.C. San Diego, ⁽²⁾ Univ. CAS, Beijing,

⁽³⁾ U. Florida, ⁽⁴⁾ Kyushu U., ⁽⁵⁾ PKU

APS-DPP 2020

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

N.B.:

• Thanks to:

J.R. Myra, X.-Q. Xu, and S.I. Krasheninnikov for helpful discussions

• A work in progress...

Outline

- Motivation: LaBombard-Eich-Goldston Scaling and its implications
- Many Questions...
- Constraints on Turbulence Production in SOL
- Turbulence Spreading: Core→SOL
- The Key Questions
- Some Equations
- Scalings
- Discussion and Conclusions

Motivation

- SOL heat load width is a critical issue for ITER, and M.F.E. in general
- LaBombard-Eich-Goldston scaling is a classic "3S's" case:
 - <u>Successful</u> works well for present day experiments
 - <u>Simple</u> (Goldston) $\lambda \approx V\tau$ with $V \approx V_D$, $\tau \sim (V_{thi}/Rq)^{-1}$ So $\lambda \sim 1/B_{\theta}$ " χ " $\approx V_D\lambda$
 - <u>Scary</u> \rightarrow extrapolation to future is pessimistic

Many Questions

• Will the L-E-G trend continue? Why not?

- SOL is <u>turbulent</u> ! (infinity of measurements)
 - Why turbulence, yet transport seemingly described by drifts?
 - As transport $\leftarrow \rightarrow$ relaxation linked, what is origin of SOL turbulence?
 - Under what conditions might turbulent transport control SOL width?

Many Limitations on SOL Relaxation

Long history of instability studies for SOL

(cf: Garbet et al, Myra and Krash '02)

 Despite <u>unfavorable</u> average curvature, a <u>remarkable number</u> of restrictions on instability!

$$-k_{\perp}\rho_{i}$$

$$-k_{r}\rho_{b} \leftrightarrow \text{drifts} \rightarrow \text{radial excursion, akin banana width}$$

$$-\text{ line tying} \leftrightarrow \text{ sheath boundary condition} \rightarrow \text{vorticity damping}$$

- ExB shear, PV gradient \rightarrow crucial to distinguish from mass flows, etc
- − parallel flows to PFC's depletes drive \rightarrow turbulence not really "flux driven"

Origin of SOL Turbulence?→ "Turbulence Spreading"

(Garbet, Hahm, P.D.) (See Hahm, P.D.; J. Kor. Phys. Soc. '18)

• SOL adjacent to pedestal/edge

- Simple model: $\Gamma_{\varepsilon} = -D_0 \varepsilon \partial_r \varepsilon$
- Point: SOL fluctuations excited in edge, scattered to SOL
- Pedestal Turbulence:
 - usual suspects: KBM, ETG, ...
 - 'MHD' turbulence: marginal PB + 'noise'
 - "Blobs", etc.
 - Spreading from no man's land (R. Singh, P.D., '19)

The Key Questions:

- Given the SOL 'stability', is the origin of SOL turbulence in the pedestal? SOL turbulence <u>not</u> locally driven ?!
- Model the SOL as a boundary layer driven by:

- heat flux $\begin{cases} drift driven \\ turbulent driven \rightarrow classic (see L+L) \end{cases}$

• <u>turbulent intensity</u> input/flux

i.e. $\Gamma_I = \Gamma_I(Q, \text{ pedestal gradients, parameters})$

 $-\lambda = \lambda(\Gamma_I, V_D, Q)$?! \rightarrow transitions ?!

Some Equations → Toward a <u>Reduced</u> Model

Comments

• In spirit of flux-driven B.L. (see Landau & Lifshitz)

• <u>Two</u> flux drives: $Q_0 \rightarrow$ heat flux, from separatrix $\Gamma_{\varepsilon_0} \rightarrow$ intensity flux, from pedestal $\Gamma_{\varepsilon_0} = \Gamma_{\varepsilon}(\nabla P_{ped}, ...) \rightarrow$ Induces SOL "non-locality" Drives SOL turbulence; Noisy ?!

- SOL production → ala' interchange
- ExB flow \rightarrow production/<u>destruction</u> by $\underline{\partial_r}\langle \nabla_r^2 \phi \rangle$

vs interchange $\rightarrow \underline{R_{ieff}}$

 \rightarrow sheat B.C. - scale indep. damping

• $\tilde{V} / l \rightarrow$ Nonlinear damping rate. Compare with ω_{Ti} ?!

Even reduced model is daunting ... so explore scalings

Taking SOL damped, spreading from SOL ...

 $\partial_t I = \gamma I - \partial_x (D_0 I \partial_x I)$ (Hahm, P.D. '04)

 $\rightarrow \delta_I \approx (D_0 I_0 / |\gamma|)^{1/2} \rightarrow$ SOL penetration depth for turbulence $I_0 \rightarrow \text{ intensity at LCFS ?!} How character ize?$ Utility ??

• Also estimate δ_I by

(Prop. Speed) / Width \approx Damping rate

• then Γ_I , the intensity flux into SOL:

 $\Gamma_I \sim I_0 \delta_I |\gamma| \sim \epsilon I_0 D_0 / w^2$, so...

Turbulence Intensity Penetration Depth into SOL

$$\delta_I \approx \Gamma_I^{1/3} D_0^{1/3} |\gamma|^{-2/3}$$

• If $D_0 \sim D_B$, $|\gamma| \sim V_{thi}/Rq$

$$\delta_{I} \approx \Gamma_{I}^{1/3} \left(\frac{m_{i} q^{2} R^{2}}{|e|B_{0}} \right)^{1/3} \approx \Gamma_{I}^{1/3} B_{\theta}^{-2/3} m_{i}^{1/3}$$

- For $\delta_I > w_{Goldston}$; $\Gamma_I > V_D^3 / D_0 |\gamma|^{1/3}$, $|\gamma| \sim \omega_{Ti}$
 - Defines the critical intensity flux required to broaden the SOL
 - Gives cross-over criterion

Comments

• $\Gamma_I > V_D^3 / D_0 |\gamma|^{1/3}$

 $|\gamma| \sim \omega_{Ti}$

 \rightarrow critical intensity flux to exceed $\lambda_{Goldston}$

- \rightarrow can translate into "blobs" formulation
- Weak B_{θ} dependence !
- Large R favorable \rightarrow weakens V_D
- If turbulence sufficient s/t damping rate

 $\tilde{V}/l > \omega_{Ti}$, can eliminate unfavorable B_{θ} scaling

Turbulent pedestal states obviously of great interest;

Experiment to measure and visualize spreading ?!

Conclusions

- Turbulence spreading from pedestal as likely origin of SOL turbulence
- Model: SOL as dual-flux-driven turbulent boundary layer:

 Q_0 , $\Gamma_{I0} \leftarrow$ Intensity flux

- Turbulence penetration depth δ_I Critical Γ_I s/t $\delta_I > w_{Goldston}$ estimated Rel n. to predestel]<math>estimated Rel n. to predestel]
 - Begs for studies of pedestal and SOL turbulence spreading dynamics, especially in "turbulent pedestal" states

Supported by U.S. Dept. of Energy under Award Number DE-FG02-04ER54738